|
|
|
|
|
Direction cosine (transformation, rotation) matrices | a11, a12, a13
a21, a22, a23 a31, a32, a33 |
Redundant, Interpretation | No gimbal lock | Most complete representation |
Cardan (Tait-Bryant) | roll, pitch, yaw
(somersault, tilt, twist) no axis repeats cyclic: (Xyz (Earth Fixed - longitude/latitude, Fick), Yzx (Helmholz), Zxy or anti-cyclic: Zyx, Xzy,Yxz |
Sequence Dependence
Increasingly sensitive to measuring errors.
|
Interpretaton in terms of anatomical motion (sagittal, frontal, transverse) | Sometimes also grouped with Euler angles
[Grood & Suntay, 1983] |
Euler | As for Cardan but first and last rotations about same axis:
Xyx, Yzy, Zxz,
|
Sequence Dependence
Gimbal lock when second
|
Interpretaton in terms of anatomical motion
No false torsion in eye movements for Xzx |
[Craig, 1989 has conversion matrices between all Euler sequence combinations] |
Euler parameters (Quaternions, Euler's axis and angle, finite rotational axis) | q = q4 + iq1 + jq2 +
kq3
where: i2 = j2 = k2 = ijk = -1 q1 = ex sin (f/2)
|
Interpretation in terms of anatomical motion | Sequence-independent
Insensitive to round-off errors |
Conversion from Euler Angles
q1 = cos(yaw/2) cos(pitch/2) sin(roll/2) - sin(yaw/2) sin(pitch/2) cos(roll/2) q2 = cos(yaw/2) sin(pitch/2) cos(roll/2) + sin(yaw/2) cos(pitch/2) sin(roll/2) q3 = sin(yaw/2) cos(pitch/2) cos(roll/2) - cos(yaw/2) sin(pitch/2) sin(roll/2) q4 = cos(yaw/2) cos(pitch/2) cos(roll/2) + sin(yaw/2) sin(pitch/2) sin(roll/2) For small angles:
Conversion
from Quaternion to Euler
[Haug, 1989; Kuipers, 1999] |
Angle-axis | q1 = Ux
q2 = Uy q3 = Uz q4 = f |
Conversion from Euler Angles | ||
Rotation Vector (Benati, Rodriguez-Hamilton) | q1 = ex tan (f/2)
q2 = ey tan (f/2) q3 = ez tan (f/2) |
Gimbal lock when 180° | ||
Helical angles (finite helical axis, screw theory, Woltring) | h1 = A*Ux
h2 = A*Uy h3 = A*Uz |
sensitive to
measurement error & noise |
combines description of location & attitude (absolute or relative)
or location & attitude
displacements |
[Ball, 1900; Woltring 1994] |
The current rotations must respect the previous rotations to avoid gimbal lock to prevent any alignment of rotation axis which causes this problem. This problem doesn't depend on the mathematical way you choose to express rotations, it depends on the way to combine rotations. The problem comes from Euler's classical transform: R=Rx.Ry.Rz
Implicitely or explicitly you use it with matrices, quaternions, Euler or Cardan angles, ...
You should correct this transform and it works whatever you used to express your rotations:
R=R[R[R[Ox,a]Oy,b]R[Ox,a]Oz,c] . R[R[Ox,a]Oy,b] .R[Ox,a].
Contributed by Julien Gouesse
Andrews Letter to the Editor, Journal of Biomechanics 17(1984)2, 155-158.
Ball, R.S. (1900) A Treatise on the Theory of Screws, Cambridge University Press
Benati, M., Morasso, P., Tagliasco, V., Zaccaria, R. (1980) Anthropomorphic robotics. I: representing mechanical complexity. Biological Cybernetics, 38, 125-140.
Benati, M., Morasso, P., Tagliasco, V. (1982) The inverse kinematic problem for anthropomorphic manipulator arms. Transactions of the ASME Journal Dynamical Systems, Measurements, and Control, 104, 110-113.
Blankevoort, L., Huiskes, R., Lange, A. de (1988) The Envelope of passive knee joint motion. J. Biomechanics 21, 705-720.
Bortz A John E. New Mathematical Formulation for Strapdown Inertial Navigation IEEE Transactions on Aerospace and Electronic Systems January 1971, Vol. AES-7, No. 1, pp 61-66
Bottema & Roth "Theoretical Kinematics", Chapter 3 (Elsevier, Amsterdam 1979)
Chao, E.Y., J. Biomech. 13:989-1006, 1980
Craig, J.J. (1989) Introduction to Robotics, Addison-Wesley
Denavit, J. and Hartenberg, R.S. (1955) A kinematic notation for lower pair mechanisms based on matrices. ASME J. Applied Mechanics, 22:215-221
Goeran Selvik, Roentgen Stereophotogrammetric Analysis - A Review Article, Acta Radiologica 31(1990), Fasc. 2.
Grood, E.S. and Suntay, W.J. (1983) A joint coordinate system for the clinical description of three-dimensional motions: applications to the knee. J. Biomech. Engng 105, 136-144.
Haug, E.J. (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon
Hiller M. Woernle C. A unified Representation of Spatial Displacements Mechanical and Machine Theory - Pergamon Press Vol. 19 pp.477-486, 1984
Jordan J. W. An Accurate Strapdown Direction Cosine Algorithm NASA TN D-5384, Sept, 1969
Kadaba M.P, H.K. Ramakrishnan and M.E. Wootten, Measurement of Lower Extremity Kinematics During Level Walking (pp. 383 - 392)
Kerry W. Spring (McGill): Euler Parameters and the Use of Quaternion Algebra in the Manipulation of Finite Rotations: a Review. Mechanism and Machine Theory 21(1986/5)5, 365-373.
The vector analysis of finite rotations and angles J. H. Laning, Jr. MIT/IL Special Rept. 6398-S-3, 1949 Mass. Inst. of Tech., Cambridge
Kuipers, J.B. (1999) Quaternions and Rotation Sequences, Princeton University Press
Liegeois Alain, Performance and Computer-Aided Design Vol. 7, Robot Technology Series Hermes Publishing, London - Paris - Lausanne 1985
Liegeois A. Les Robots, Tome 7: Analyse des performances et C.A.O. Hermes, Neully 1984
McCarthy JM, Introduction to Theoretical Kinematics, MIT Press, 1990.
Miller Robin B. A New Strapdown Attitude Algorithm J. Guidance, Vol. 6, No. 4, July-Aug 1983, pp 287-291
Panjabi M.M, A.A. White & R.A. Brand in the Journal of Biomechanics 7(1974), 385
Rooney, J. (1977) A survey of representations of spatial rotation about a fixed point. Environment and Planning B, 4:185-210
Rooney, J. (1978) A comparison of representations of general spatial displacement. Environment and Planning B, 5:45-88
Roth B, "Finite-Position Theory Applied to Mechanism Synthesis" in ASME Transactions, Journal of Applied Mechanics, pp 599-605
Simon L. Altmann (Oxford): Hamilton, Rodrigues, and the Quaternion Scandal. Mathematics Magazine 62(1989/12)5, 291-308.
van Kampen A. and Huiskes R, The Three-Dimensional Tracking Pattern of the Human Patella (pp. 372 - 382)
M. Williams & H.R. Lissner, Biomechanics of Human Motion, W.B. Saunders Co., Philadelphia 1962
William G. Negendank, Felix R. Fernandez-Madrid, Lance K. Heilbrun, and Robert A. Teige, Magnetic Resonance Imaging of Meniscal Degeneration in Asymptomatic Knees (pp. 311 - 320)
Woltring (1994) J Biomech 27:1399-1414